

Department of Civil Engineering Katihar Engineering College, Katihar

Subject: Design of Concrete Structure-I Topic: Footing Lecture: 02 Course Instructor: Prof. Rashid Mustafa

Scanned with CamScanner

Critical section for SF (One way
Strong) Strong for SF (One way
Strong) Strong distance from face b
Column
Nost Critical section will be
the section when overhapp is maxim

$$OY_2 = \left[\frac{L-a}{2} - d\right]$$

Jobal shear force for I an ship
 $Vy = Nox I \times OY_2$
 $Vy = Nox I \times OY_2$
 $Vy = Nox I \times \left[\left(\frac{L-a}{2}\right) - d\right]$
 $Vy = Nox X \times \left[\left(\frac{L-a}{2}\right) - d\right]$
 $Vy = Nox X \times \left[\left(\frac{L-a}{2}\right) - d\right]$
Nominal shear show
 $Tv = \frac{V}{B_1d} = \frac{V}{1000 \times d} \leq K.7c$
 $Tvu = \frac{Vu}{B_1d} = \frac{Vu}{1000 \times d} \leq K.7c$

I

Scanned with CamScanner

Value & K

Slab Htree	≤ 150	175	200	225	250	275	7,300
K	1.30	1.25	1.20	1.15	1.10	1.05	1.00

 $\left(4\right)$

Critical section is at "d" distance Column Section. all around the

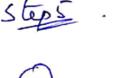
Net Punching force = (Pret)

 $P = W_0(a+d)(b+d)$

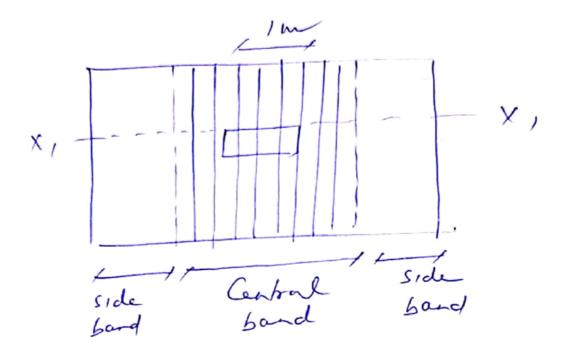
Punching Shear = Strong (Typ.)

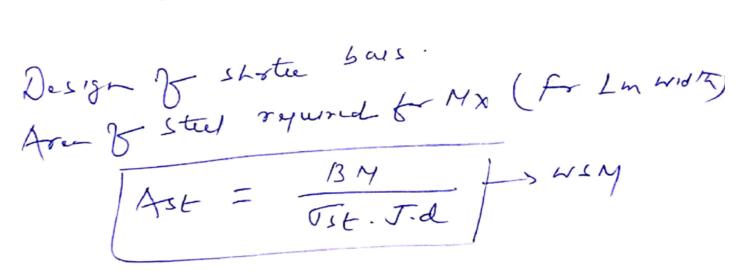
Phet-Resisting Area

Phet Perimeter × Width


Scanned with CamScanner

P - Wo(a+d)(6+d) (vp(developed) = 2[(a+d)+(6+d)] X d


Ly WSM


In LSM Pu - Wuux (a+d)(6+d) Zup(dev) 2/(a+d)+(6+d)/xd Permissible Punching shear strong Zvp (Permissible) = KBX0.16V fer -> WSM Cvp(pumissible) = KBX 0.25√fek LSM $|k_{\mathcal{B}} = \left(\begin{smallmatrix} 0.5 + \frac{1}{\alpha} \\ \alpha \end{smallmatrix}\right) \neq 1.0$ When ,

Ast = BAU SLIM

0.5 fex (1- 1-4.6 Mu Bid Fy L Feers, d2 Bid Ast = BIE 1000 mm

Scanned with CamScanner

5

Aren & steel required for fall lyth (L) = LXAst. John Nog bars for full width (27) = <u>Lx Ast</u> for full width (27) = <u>T</u>x #2 No forenterent to be provided in Central bacd $(h_c) = 2T \times \frac{2}{(1+\frac{1}{B})}$ Nof reinforcement to be provided on two side bands nr-hc $(n_{i}) =$ Moment about Y-X (For My) Ast = My Ost.J.d Lowsmy

Scanned with CamScanner

 (\circ)

Ast = Muy 0.87 fy J.d total width B total Reafs Ly distribute equally on full width B

7